237. Synthese von optisch aktiven Carotinoiden mit 3,5,6-Trihydroxy-5,6-dihydro-β-Endgruppen

von Richard Buchecker, Urs Marti und Conrad Hans Eugster*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(6.IX.84)

Syntheses of Optically Active Carotenoids with 3,5,6-Trihydroxy-5,6-dihydro β -End Groups

Summary

For the specification of the relative and absolute configuration in carotenoids with 3,5,6-trihydroxy-5,6-dihydro β -end groups, several ionone derivatives and carotenoids bearing this end group were synthesized. Acid-catalyzed hydrolysis of (3S,5S,6R)-3-acetoxy-5,6-epoxy-5,6-dihydro- β -ionone (7) and of its (3S,5R,6S)-isomer (13) gave the diols 8 and 15, respectively, with exclusive inversion at C(5) (Scheme 2). Compared to this, mild acid hydrolysis of caroten-5,6-epoxides in the presence of H₂O resulted in the formation of 5,6-diols with either inversion or retention of the configuration at C(6) (Scheme 3). Spectroscopic data allowed us to distinguish the relative configurations $(3R^*,5S^*,6S^*)$ (see A), $(3R^*,5R^*,6R^*)$ (see B), $(3R^*,5S^*,6R^*)$ (see C), and $(3R^*,5R^*,6S^*)$ (see D) of the 3,5,6-trihydroxy-5,6-dihydro β -end groups. Synthesis of the optically active carotene-hexols 20 and 21 and comparison with published data led to a revision of the structure of mactraxanthin (now formulated as 20), heteroxanthin (now formulated as 28), and further carotenoids with 3,5,6-trihydroxy end groups.

1. Einleitung. – Carotinoide mit 3,5,6-Trihydroxy-5,6-dihydro- β -Endgruppen sind bisher in der Natur eher selten gefunden worden. Es gehören dazu: Heteroxanthin (1) aus Algen¹) die beiden epimeren Carotin-pentole 2 und 3 aus «Trolliflor»-Präparaten²)³), ein Carotin-tetrol aus Blüten von *Ranunculus acer*, dem Struktur 4 zuerteilt wurde [7]⁴), und Mactraxanthin (5) aus der Muschel *Mactra chinensis* [8]⁴). Sie alle können als Hydrolyseprodukte von 5,6-Epoxy-5,6-dihydrocarotinen aufgefasst werden, d.h. 1 von Diadinoxanthin, 2 von Neoxanthin, 4 von Lutein-epoxid und 5 von Violaxanthin. Da Carotin-epoxide in der Natur verbreitet vorkommen, ist es eher sonderbar, dass solche Glycole nicht viel häufiger entdeckt worden sind. Allerdings muss berücksichtigt werden, dass sich Carotin-5,6-epoxide bevorzugt zu 5,8-Epoxiden umlagern,

¹) Isolierung und Konstitution [1] [2]; absolute Konfiguration im Sinne von 1 [3]; Revision, diese Arbeit Kap. 4.

²) Aus Blüten von Trollius europaeus [4]; Trolliflor = Neoxanthin [5] [6].

³) Strukturvorschlag [3]; Revision, diese Arbeit Kap.4.

⁴⁾ Strukturrevision, diese Arbeit Kap. 4.

und dass die hohe Polarität der Carotinpolyole zudem eine saubere Trennung sehr erschwert.

Der stereochemische Verlauf der hydrolytischen Öffnung von Carotin-5,6-epoxiden ist noch nicht genau untersucht worden; ausserdem können aus einem 5,6-Epoxycarotin-3-ol mit (3S)-Konfiguration und einer zur OH-Gruppe *trans*-ständigen Epoxyfunktion im Prinzip die Endgruppen A-D entstehen (s. Schema 1), deren eindeutige spektroskopische Charakterisierung mit nicht geringen Schwierigkeiten verbunden sein dürfte. Deshalb haben wir uns entschlossen, diese Endgruppen synthetisch bzw. partialsynthetisch herzustellen und sie so zu charakterisieren, dass ein in kleinsten Mengen aus der Natur isoliertes Carotin-glycol durch Vergleich strukturell festgelegt werden kann.

2. Synthese von (3S,5R,6R,3'S,5'R,6'R)-5,6, 5',6'-Tetrahydro- β , β -carotin-3,5,6,3', 5',6'-hexol (20) und (3S,5S,6S,3'S,5'S,6'S)-5,6,5'6'-Tetrahydro- β , β -carotin-3,5,6,3', 5',6'-hexol (21); Endgruppen A und B (s. Schema 2). – Durch Epoxydierung von (R)-3-Acetoxy- β -ionon (6)⁵) mit *m*-Chlorperbenzoesäure entstanden, wie schon Mori [9] nachgewiesen hat, die Isomeren 7 und 13 im Verhältnis 4:1. Sie wurden chromatographisch und durch fraktionierte Kristallisation getrennt. Hydrolytische Öffnung von 7 mit 30proz. H₂SO₄/THF gab das kristalline Diol 8, Schmp. 168,5–169,5°. Da ein

⁵) Wir danken den Herren Drs. *H. Mayer* und *R.K. Müller* für die Überlassung dieses wertvollen Ausgangsmaterials.

Nachbargruppeneffekt der Acetoxygruppe auf den sterischen Verlauf der Hydrolyse nicht ausgeschlossen werden konnte, wurde die Struktur von 8 durch eine Einkristall-Röntgenanalyse von (\pm) -8 gesichert (s. Fig. 1)⁶). Sie zeigt, dass ausschliesslich Inversion an C(5) eingetreten ist, in Übereinstimmung mit unseren früheren Ergebnissen an optisch aktivem β -Ionon-epoxid [10]. Die Wittig-Horner-Reaktion mit 8 ergab so geringe Ausbeuten an 10, dass die Reaktionsfolge umgekehrt werden musste: aus 7 entstand der C_{15} -Ester 9 in sehr guter Ausbeute und zudem unter selektiver Bildung des (9E)-Isomeren, Schmp. 50–50,5°. Die Hydrolyse von 9 ergab dann in guter Ausbeute das Diol 10, Schmp. 134,5–135°. Die sich anschliessenden Schritte, Reduktion mit Diisobu-

⁶) Durchgeführt von den Herren Drs. J. H. Bieri und R. Prewo.

Fig. 1. Kristallstruktur von (\pm) -8

Fig. 2. Kristallstruktur von (±)-15

tylaluminiumhydrid (DIBAH; $\rightarrow 11$, Schmp. 73–73,5°) und Oxydation mit MnO₂ ($\rightarrow 12$, amorph), verliefen normal. Das zu 7 isomere Epoxid 13 wurde denselben Reaktionen unterworfen. Die direkte Hydrolyse ergab ein neues Diol 15, Schmp. 121–122°, dessen Struktur ebenfalls durch Röntgenstrukturanalyse (von (\pm)-15) gesichert wurde (s. *Fig. 2*)⁶). Demnach ist auch in diesem Fall Inversion ausschliesslich an C(5) eingetreten. Nach der *Wittig-Horner*-Reaktion von 13 zu 14 (Öl)⁷) wurde in MeCN/H₂O/H₂SO₄ hydrolysiert, wobei zwei Produkte erhalten wurden, nämlich 10 (identisch mit dem früher aus 9 erhaltenen Produkt) und 16, Schmp. 135–136°, identisch mit dem aus 15 hergestellten Diol. *Damit ist gezeigt, dass 5,6-Epoxide vom β-Ionontypus auch unter Inversion an C(6) hydrolysiert werden können*. Reduktion von 16 zum Alkohol 17 (Schmp. 104–104,5°) und Oxydation lieferten den Aldehyd 18 (Öl).

Die beiden optisch aktiven Aldehyde 12 und 18 wurden hierauf in separaten Ansätzen mit dem Bisphosphoniumsalz 19 zu den Carotinoiden 20 bzw. 21 umgesetzt. Hexol 20 wurde in dunkelorangeroten feinen Nädelchen vom Schmp. 237–239° (Vak.-Kapilare) und 21 in orangeroten Nadelbüscheln, Schmp. 218–222° erhalten⁸). Überraschend gross sind die Unterschiede im chromatographischen Verhalten von 20 und 21: während 20 im DC (Kieselgel) mit Aceton/Hexan 1:1 einen R_{f} -Wert von 0,12 besitzt, wandert 21 fast zur Front (R_{f} 0,9). Eine naheliegende Erklärung beruht auf verschiedenen

⁷) Nach HPLC-Analyse enthält das Produkt fast ausschliesslich das (all-E)-Isomere!

⁸) Nach HPLC-Analysen ca. 20–25% eines (mono-Z)-Isomeren (vermutlich (13Z)) enthaltend.

			Tab	.1. Verglei	ich von Mactri	axanthin mit 2	20 und 21					
		Mactraxa	unthin [8]		20				21			
Kristalle Schmp.		dunkelor 232–233°	ange Nadeln		dunkel 237–23	orange filzige 9°	Nädelchen		orange Bür 218-222°	ldel		
UV/VIS (Et ₂ 0)		(394), 411	6, 439, 469 (q	ual.)	265 (2: 327 (6: 416 (81 469 (11	5300), 317 (53) 300), 395 (sh. ⁻ 1500), 440 (11) (7000)	00), 42700), 9000),		265 (21500) 327 (12700) 415 (66000) 467 (83000)	, 313 (11000), , 395 (sh, 405(, 438 (92000),	,00),	
MS		636, 618, 546, 544, 508, 493,	600, 582, 56 ² 538, 528, 526 465, 221, 181	4 . 10 [°]	636, 61 538, 50	18, 600, 582, 5)8, 221, 181	550, 544,		636, 618, 60 221, 181	30, 582, 526, 5	.08,	
NMR (200 MHz,	(D ₅)Pyridin)	$\begin{array}{c} 1,360 \ (s, \\ 1,682 \ (s, \\ 1,748 \ (s, \\ 2,007 \ (s, \\ 4,93 \ (m) \end{array})$	6H)) 6H)) 6H) 6H) CH ₃ (6H) CH ₃ (CH ₃ (6H)) (CH ₃ (7H)) (CH ₃ (CH)) (CH ₃ (CH)) (CH ₃ (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH)) (CH))(CH))	(16,16'), (17,17') (18,18') (19,19'), (20,20') (3,3')	1,32 (s. 1,69 (s. 1,76 (s. 2,01 (s. 4,9 (m	6H) (CH3 (6H) (CH3 (6H) (CH3 (CH3 (CH3 (CH3 (CH3) (CH3	a(16,16'), a(17,17'), 5(18,18') 5(19,19'), 5(20,20') C(3,3')		1,285 (s, 64 1,60 (s, 64 1,79 (s, 64 1,79 (s, 64 2,01 (s, 64 2,05 (s, 64	$\left. \begin{array}{c} \text{CH}_{3}(16,1)\\ \text{CH}_{3}(17,1)\\ \text{CH}_{3}(18,1)\\ \text{CH}_{3}(18,1)\\ \text{CH}_{3}(18,1)\\ \text{CH}_{3}(19,1)\\ \text{CH}_{3}(19,1)\\ \text{CH}_{3}(20,2)\\ \text{CH}_{3}(20,$	6), 9),	
CD (EtOH, RT.)		328 (- 1. 266 (-10. 230 (- 0.	(1, 4, (2)		265 (- 224 (+	3,6) 1,9)			265 (+2,87) 215 (+1,1)			
Tab.2. Wichtige	¹ H-NMR-Signalı	? (CDCl ₃) von tinoi	diastereoison iden 20, 21, 2	neren 3,5,6 3, 24 und 2	5-Trihydroxy-5 26 bzw. in den	,6-dihydro- un Iononderivate	rd 3-Acetox, n 8, 10–12	y-5,6-dihyd und 15–18	roxy-5,6-dih	ydro-β-Endgru,	ppen in den	Caro-
Endgruppe	V					В					ر د	۵
Verbindung	20^{a}) 23^{a})	8 ^b)°)	10 ^c) ^d)	11 ^c) ^d)	12 ^c) ^d)	21 ^a)	15 ^b) ^c)	16 ^c) ^d)	17 ^{c) d})	18 °) ^d)	24 ^a)	26 ^a)
CH ₃ (16) ^e)	0,87 0,87	0,87	0,86	0,86	0,87	0,895	0,89	0,89	0,88	0,89	0,82	1,03
CH ₃ (17) ⁹)	1,17 1,18	1,16	1,15	1,16	1,18	1,125	1,14	1,13	1,10	1,11	1,11 1,255	1,06
CH ₃ (18) [*]) CH ₂ (19)	1,24 1,25 1 96 1 97	1,32	1,28	1,23	1,20	15,1 198	1,24	17,1	1,40	1,24	1.92	1.94 1.94
$CH_{3}(2)$	1,96 1,97					1,98					1,97	1,97
H-C(3) H-C(7)	4,2 4,2 () ()	5,2	5,2	4,0	4,1	4,3 ⁵)	5,2	5,2	4,0	4,3	4,3 5,88	4,0 5,82
^a) Bei 200 MHz. zwischen 6,0 und	^b) Bei 90 MHz. 6,8 ppm.	°) AcO-C(3) s	tatt HO-C(3) in A und	B . ^d) Bei 80	MHz. ^e) Vert	tauschbare 2	Cuordnunge	en. ^f) Signal	befindet sich	in der Vinyl	region

2047

HELVETICA CHIMICA ACTA - Vol. 67 (1984)

Sesselkonformationen; demnach ist in 20 OH–C(3) äquatorial und nicht abgeschirmt, in 21 hingegen axial und intramolekular über eine H-Brücke mit OH–C(5) verbunden. Beide Verbindungen bilden mit Ac₂O/Pyridin eine 3,3'-Di-O-acetylverbindung, welche nur im Fall von 21 mit Trimethylchlorsilan einen Disilyläther ergibt (d. h. an OH–C(5) und OH–C(5')). Die *Cotton*-Effekte von 20 und 21 sind erwartungsgemäss schwach, aber genügend verschieden, sodass sie zur Differenzierung herangezogen werden können, s. *Tab. 1*. Der *Cotton*-Effekt, der der UV-Hauptbande bei *ca.* 265 nm zugeordnet werden kann, hat bei 20 und 21 entgegengesetztes Vorzeichen. Er ist offensichtlich vom Chiralitätszentrum C(6) bestimmt. Entsprechend verlaufen die CD-Kurven der Diastereoisomerenreihen 7–12 und 13–18 fast spiegelbildlich.

3. Herstellung von Carotinoiden mit den Endgruppen C und D (Schema 3). – Die Synthesen von (3S,5R,6S)- und (3S,5S,6R)-3,5,6-Trihydroxy-5,6-dihydroionon konnten noch nicht erfolgreich abgeschlossen werden⁹). Deshalb haben wir Hydrolysen an Lutein-epoxid¹⁰) (22) bzw. an seinem partialsynthetischen Diastereoisomeren 25 nach der Vorschrift von [3] ausgeführt. Dabei entstanden neben den furanoiden Umlagerungsprodukten Flavoxanthin und Chrysanthemaxanthin¹¹) auch die erwarteten Carotin-tetrole. Aus 22 entstanden Tetrole mit grossen Polaritätsunterschieden. Die polare Verbindung besitzt, wie ein Vergleich ihrer ¹H-NMR-Signale mit denen der Endgruppe A von 20 zeigt, die (3S,5R,6R)-3,5,6-Trihydroxy-5,6-dihydro- β -Endgruppe und hat damit Struktur 23. Bei der Hydrolyse ist also Inversion an C(6) eingetreten. Die weniger polare Verbindung weist laut ¹H-NMR-Vergleich mit 21 eine von Endgruppe B verschiedene Konfiguration auf. Wenn man annimmt, dass die Epoxidhydrolyse nicht mit einer zweifachen Inversion (d. h. an C(5) und C(6)) abläuft, so kommt nur Endgruppe **C** in Frage. Dies würde bedeuten, dass die Epoxid-Hydrolyse über einen S_{λ} 1-artigen Mechanismus abläuft und ein Carbokation mit genügend langer Lebensdauer entstünde, sodass es auch von der α -Seite nucleophil angegriffen werden kann. C(6) ist für ein solches Ion prädestiniert. Diese Annahme liess sich durch die Hydrolyse von par-

⁹) Über diese Versuche hoffen wir später berichten zu können.

¹⁰) Isoliert aus *Taraxacum officinale*; absolute Konfiguration [11].

¹¹) Strukturen s. [12].

tialsynthetischem Lutein-epoxid 25^{10}) bestätigen: das Produkt enthielt eine neue, von A, **B** oder C verschiedene Endgruppe, deren Struktur deshalb D entsprechen muss. Die komplementären Ergebnisse stützen die getroffenen Zuordnungen¹²). Das neue Carotin-tetrol hat demnach Struktur 26.

Aus diesen Experimenten (Schema 3) kann geschlossen werden, dass Hydrolysen an Carotin-5,6-epoxiden unter Retention und Inversion an C(6) verlaufen, im Gegensatz zu den meisten im Schema 2 beschriebenen Experimenten (Ausnahme $14\rightarrow 10$). Eine nachträgliche Inversion an den gebildeten Produkten kann ausgeschlossen werden, denn Kontrollexperimente an den Verbindungen 20, 21, 24 und 26 unter den gleichen Hydrolysebedingungen gaben nach 18 Std. Reaktionsdauer keinerlei Anzeichen von Veränderungen. Diese Experimente stehen in Übereinstimmung mit früheren Versuchen an Carotinglycolen [3]; sie stimmen aber nicht überein mit der Annahme, wonach 5,6-Epoxycarotinoide an C(5) sowohl unter Inversion als auch unter Retention geöffnet werden können [3].

Von den drei Carotinglycolen konnte lediglich 23 frei von (Z)-Isomeren gewonnen werden. Die Tetrole 24 und 26 enthielten laut HPLC-Analyse je 2 (Z)-Isomere mit ca. 20% Gesamtanteil. Dies beeinflusst die Schlussfolgerungen bezüglich der Konfiguration der Endgruppe jedoch nicht; s. Tab. 2. Die Carotinoide 23, 24 und 26 bilden 3,3'-Di-O-acetylverbindungen, und diese lassen sich im Gegensatz zu 21 an HO-C(5) nicht silylieren. Die CD-Spektren von 23, 24 und 26 sind wenig aussagekräftig, da der Einfluss der ε -Endgruppe denjenigen der Trihydroxy-Endgruppe überdeckt.

Aus der Zusammenstellung der wichtigsten ¹H-NMR-Daten in *Tab.2* geht hervor, dass mit Hilfe der ¹H-NMR-Spektren eindeutig entschieden werden kann, welcher Typus der Trihydroxy-Endgruppe (**A**–**D**) in einem Carotinoid oder Iononderivat vorliegt. Als wertvolles diagnostisches Merkmal hat sich die chemische Verschiebung von H–C(7) erwiesen: bei den 5,6-*trans*-Diolen liegt das Signal im allgemeinen Vinylteil zwischen 6,05–6,8 ppm, bei den 5,6-*cis*-Diolen hingegen erscheint es bei bedeutend höherem Feld (5,88 in **C**, 5,82 in **D**.

Eine ähnliche Hochfeldverschiebung von H–C(7) wurde auch bei Carotin-5,6-epoxiden, z. B. bei den stereoisomeren Antheraxanthinen, beobachtet [13]. So sind die übereinstimmenden chemischen Verschiebungen von H–C(7) im partialsynthetischen Antheraxanthin (OH–C(3) und 5,6-Epoxid *cis*-ständig) und in der Endgruppe **D** (5,82 ppm) bzw. diejenigen von H–C(7) in Antheraxanthin (OH–C(3) und 5,6-Epoxid *trans*-ständig) und in der Endgruppe **C** (5,88 ppm) bemerkenswert.

4. Revision von veröffentlichten Strukturen von Carotinoiden mit Trihydroxy-Endgruppen. – a) Heteroxanthin. Aus folgenden Gründen wurde Heteroxanthin Struktur 1 (Endgruppe **B**; s. Kap. 1) zugeordnet [3]: bei der Hydrolyse von Diadinoxanthin (27, s. Schema 4) mit verdünnter wässeriger Säure wurden (neben den beiden furanoiden Diadinochromen) zwei 3,5,6-Triole im Verhältnis 2:1 gefunden: Das in grösserer Menge gebildete Triol war polar (R_f 0,44), bildete eine Di-O-acetylverbindung und liess sich an der Trihydroxy-Endgruppe nach Acetylierung von HO–C(3) und HO–C(3') nicht silylieren. Aufgrund einer im IR festgestellten H-Brücke (*ca.* 3460 cm⁻¹), interpretiert als einem *cis*-Cyclohexan-1,3-diol zugehörend, wurde diesem 3,5,6-Triol Endgruppe **B** zugeordnet. Da es sich weiterhin mit Heteroxanthin als identisch erwies, folgte Struktur 1 für dieses.

¹²) Dass im Fall der Hydrolyse von 25 nicht auch ein Carotinoid mit Endgruppe B gefunden wurde, kann auf die sehr geringe Menge von eingesetztem Epoxid zurückgeführt werden.

Dem weniger polaren 3,5,6-Triol mit R_f 0,54, das ebenfalls eine Di-O-acetylverbindung bildete, die sich in der Trihydroxy-Endgruppe an HO-C(5) noch silylieren liess, wurde aufgrund der schwächeren intramolekularen H-Brücke (3565 cm⁻¹; interpretiert als *cis*-Cyclohexan-1,2-diol) Endgruppe C zugeschrieben. Damit wurde explizit eine Reaktion an C(5) angenommen, d. h. eine Inversion auf dem Weg zum Heteroxanthin und eine Retention im Fall der Bildung des Epimeren. Diese Annahme muss aufgrund der in den *Kap.2* und 3 dargelegten Ergebnisse revidiert werden. Nach diesen besitzt das in grösserer Menge gebildete 3,5,6-Triol mit R_f 0,44 (semisynthetic heteroxanthin) die Endgruppe A. Somit muss auch die Struktur von Heteroxanthin im Sinne von (3S,5R,6R,3'R)-7',8'-Didehydro-5,6-dihydro- β , β -carotin-3,5,6,3'-tetrol (28) revidiert werden.

Die Struktur des zweiten 3,5,6-Triols (semisynthetic 5-epimeric heteroxanthin; R_f 0,54) ist korrekt (Endgruppe C); sie lautet (3S,5R,6S,3'R)-7',8'-Didehydro-5,6-dihydro- β,β -carotin-3,5,6,3'-tetrol.

b) Pentole 2 und 3 aus Trollius europaeus. Die in [3] benutzten Argumente für eine Strukturzuordnung dieser Pentole (s. Kap. 1) waren die gleichen wie für Heteroxanthin: unterschiedliche intramolekulare H-Brücken, interpretiert als cis-Cyclohexan-1,3-diol bzw. cis-Cyclohexan-1,2-diol, Partialsynthese durch Hydrolyse von Neoxanthin (29) und Annahme, dass die Epoxidöffnung an C(5) ablaufe. Dies muss nun revidiert werden: das polarere Hydrolyseprodukt (R_f 0,32; 'pentol 6' in [3]) hat Endgruppe A; der Strukturvorschlag 2 (s. Kap. 1) ist also nicht korrekt, es muss sich um (3S,5R,6R,3'S,5'R,8'R)-6',7'-Didehydro-5,6,5'6'-tetrahydro-β,β-carotin-3,5,6,3',5'-pentol (30) handeln. Die weniger polare Nebenkomponente (R_t 0,38; 'pentol 7' in [3]) hat vorgeschlagene Struktur 3 stimmt Endgruppe С. Die damit überein $((3S,5R,6S,3'S,5'R,8'R)-6',7'-Didehydro-5,6,5'6'-tetrahydro-\beta,\beta-carotin-3,5,6,3',5'-pen-$

tol). Es ist wahrscheinlich, dass 30 und 3 nicht nur in gelagertem Neoxanthin, sondern auch in frischen Blüten vorkommen¹³).

c) 5,6-Dihydroxy-5,6-dihydrolutein aus «Taraxanthin» von Ranunculus acer [7]. Diese in Kap. 1 erwähnte Verbindung ist ohne Zweifel ein Hydrolyseprodukt von Lutein-epoxid. Aus den verfügbaren Daten (niedriger R_{Γ} -Wert; Bildung einer Di-O-acetylverbindung, die nicht weiter silylierbar war) folgt mit Sicherheit, dass die postulierte Struktur 4 [7] mit Endgruppe **B** nicht richtig sein kann. Wahrscheinlich besitzt diese Verbindung Struktur 31; allerdings kann die C(6)-epimere Verbindung mit Endgruppe C noch nicht mit Sicherheit ausgeschlossen werden¹⁴). Bei einer späteren Neuuntersuchung von R. acer wird man auf das mögliche Vorkommen beider Isomere achten müssen.

d) Struktur von Mactraxanthin. Für diese von Matsuno & Sakaguchi isolierte Verbindung [8] wurde aufgrund einer kaum schlüssigen Interpretation der CD-Daten Struktur 5 (s. Kap. 1) vorgeschlagen. Der eingehende Vergleich der publizierten Daten (siehe Tab. 1) führt nun zum Schluss, dass Struktur 5 (Endgruppe B) nicht zutreffen kann, denn die besonders aussagekräftigen 'H-NMR-Daten sind nur mit Endgruppe A vereinbar. Grössere Diskrepanzen betreffen die CD-Daten. Doch scheint nach bisheriger Erfahrung ein Δe -Wert von -10.4 für eine Verbindung dieser Art ungewöhnlich zu sein. Nach unserer Auffassung besitzt Mactraxanthin Endgruppe A und damit die Struktur des (3S,5R,6R,3'S,5'R,6'R)-5,6,5',6'-Tetrahydro- β , β -Carotin-3,5,6,3',5',6'-hexols (20). Mactraxanthin kann somit als normales Hydrolyseprodukt von Violaxanthin betrachtet werden. Möglicherweise bringen genaue HPLC-Analysen der polaren Carotinoide aus M. chinensis auch das Isomer mit Endgruppe C zutage!

e) Weitere Carotinoide mit Trihydroxy-Endgruppen. Citrusfrüchte sind besonders reich an verschiedenartigen Carotinoiden, sowohl in der Schale (Flavedo) als auch im Fruchtfleisch [14] [15]. Schon früh sind in den sehr polaren Fraktionen auch 5,6-Diole und andere Polyole vermutet worden, doch ist keine der verschiedenen Komponenten mit genügender Genauigkeit charakterisiert worden («Trollein», «Valenciachrom», «Trollein a», «Trollein b», «Trollichrom-like a», «Trollichrom-like b» etc. etc.¹⁵). Am besten beschrieben ist ein Tetrol aus dem Saft von Valencia-Orangen [17], für das die Konstitution eines 5,6-Dihydro- β , β -carotin-3,5,6,3'-tetrols mit guten Gründen angenommen werden darf. Wir werden auf die Struktur dieser Verbindung in einer späteren Arbeit zurückkommen.

Da Citrusfrüchte relativ viel Epoxide enthalten (Violaxanthin, Antheraxanthin und *cis*-Isomere [14]), darf erwartet werden, dass neben ihren furanoiden Umlagerungsprodukten auch ihre Hydrolyseprodukte vorkommen.

Wir danken den folgenden Institutionen und Personen für ihre Unterstützung der vorliegenden Arbeit: dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung dieser Arbeit, den Herren Drs. J. H. Bieri und R. Prewo für die Überlassung der Resultate ihrer Einkristall-Röntgenstrukturanalyse der Verbindungen (\pm) -8 und (\pm) -15, den analytischen Abteilungen unseres Instituts für Spektren, Frau Edith Märki-Fischer für HPLC-Analysen und den Herren Drs. H. Mayer und R. K. Müller, F. Hoffmann-La Roche & Co., AG, für Überlassung von (R)-3-Acetoxy- β -ionon.

¹³) Versuche in dieser Richtung sind geplant.

¹⁴) Ein direkter Vergleich der früher isolierten Verbindung [7] mit den in Kap. 3 beschriebenen partialsynthetischen Tetrolen 23, 24 und 26 aus Lutein-epoxid war nicht mehr möglich.

¹⁵) Literatur, siehe Straub [16].

Experimenteller Teil

1. Allgemeines. S. [13] [18] [19].

2. (3S,5S,6R)-3-Acetoxy-5,6-epoxy-5,6-dihydro- β -ionon (= 4-[(1R,2S,4S)-4-Acetoxy-1,2-epoxy-2,6,6-trimethylcyclohexyl]-3-buten-2-on; 7) und (3S,5R,6S)-3-Acetoxy-5,6-epoxy-5,6-dihydro- β -ionon (13). Modifiziert nach [9]: Die Lösung von 5 g (3R)-Acetoxy- β -ionon (6) in 25 ml CHCl₃ wurde bei 0° unter Rühren zu 4,39 g m-Chlorperbenzoesäure in 125 ml CHCl₃ getropft. Nach 5 Std. bei 0° wurde mit weiteren 500 mg fester Persäure versetzt und noch 20 Std. bei RT. gerührt. Hierauf wurde in Et₂O aufgenommen, darauf nacheinander mit ges. NaHCO₃, verd. Na₂S₂O₅, ges. NaHCO₃ und H₂O gewaschen und azeotrop mit AcOEt getrocknet. Kristallisation aus CH₂Cl₂/Hexan im Dreiecksverfahren, wobei die erste Mutterlauge an Kieselgel Mallinckrodt (Säule 21 × 4,2 mm) mit Hexan/AcOEt 9:1 bis 4:1 chromatographiert wurde, ergab 757 mg reines 13, 1,97 g 7, enthaltend 2% Isomer 13, sowie 1,76 g 7, enthaltend 10% Isomer. 7: farblose Kristalle, Schmp. 67–70° ([9]: 110–11°), $[\alpha]_{12}^{22} = +10,7°$ (c = 0,214, CHCl₃; [9]: $[\alpha]_{12}^{22} = +3,7°$ (c = 0,6, CHCl₃)). UV (EtOH): 232 (12200). CD (EtOH): 384 (0), 325 (-0,14), 275 (0), 232 (+4,52), 210 (0). ¹H-NMR (90 MHz, CDCl₃): 0,99, 1,18, 1,27 (3s, je 3H, 2 CH₃-C(1), CH₃-C(5)); 2.03 (s, 3H, Ac); 2,29 (s, 3H, CH₃-C(9)); 1,2, 2,5 (2m, 4H, H₂C(2), H₂C(4)); 4,93 (m, 1H, H-C(3)); 6,33 (A von AB, J = 16, 1H, H-C(8)); 6,97 (B von AB, J = 16, 1H, H-C(7)).

13: farblose Kristalle, Schmp. 126° ([9]: 125-126°), $[\alpha]_{D}^{22} = -112,3°$ (c = 0,095, CHCl₃; [9]: $[\alpha]_D = -90,2°$ (c = 0,41, CHCl₃)). UV (EtOH): 232 (12700). CD (EtOH): 376 (0), 330 (+0,23), 270 (0), 232 (-9,49), 206 (0). ¹H-NMR (90 MHz, CDCl₃): 1,00, 1,20, 1,22 (3s, je 3H, 2 CH₃-C(1), CH₃-C(5)); 2,03 (s, 3H, Ac); 2,30 (s, 3H, CH₃-C(9)); 1,2-2,6 (*m*, 4H, H₂C(2), H₂C(4)); 4,93 (*m*, 1H, H-C(3)); 6,34 (*A* von *AB*, *J* = 16, 1H, H-C(8)); 7,03 (*B* von *AB*, *J* = 16, 1H, H-C(7)).

3. (35,5R,6R)-3-Acetoxy-5,6-dihydroxy-5,6-dihydro β -ionon (= 4-[(1R,2R,4S)-4-Acetoxy-1,2-dihydroxy-2,6,6-trimethylhexyl]-3-buten-2-on; 8). Zu einer Lösung von 1 g 7 in 40 ml THF wurden unter Rühren bei RT. 5 ml 30proz. H₂SO₄ getropft. Die Mischung wurde 7 Std. bei 44° gehalten, hierauf mit festem NaHCO₃ versetzt, das THF i.V. abgezogen und der Rückstand mit H₂O versetzt und mehrmals mit AcOEt extrahiert. Nach azeotropem Trocknen mit AcOEt wurde in 7 ml Pyridin gelöst, mit 2,5 ml Ac₂O versetzt und über Nacht stehen gelassen. Nach Abdampfen der Reagenzien i. HV. wurden 893 mg (84%) Rohprodukt erhalten. Kristallisation aus CH₂Cl₂/Hexan ergab 640 mg (60%) farblose Prismen, Schmp. 169°. Ein sublimiertes Aliquot (90°/5·10⁻² Torr) hatte Schmp. 168,5-169,5°, $[\alpha]_{12}^{22} = -33,3°$ (c = 0,305, CHCl₃), $[\alpha]_{12}^{22} = -36,6°$ (c = 0,033, EtOH). UV (EtOH): 231 (10400). CD (EtOH): 364 (0), 320 (+0,29), 284 (0), 238 (-5,19), 222 (0), 210 (+5,28), ca. 200 (0). ¹H-NMR (90 MHz, CDCl₃): 0,87 (s, 3H, CH₃-C(1)); 1,16, 1,32 (s, je 3H, CH₃-C(1), CH₃-C(5)); 1,5-2,0 (m, 4H, H₂C(2), H₂C(4)); ca. 5,22 (m, $w_{12} \approx 30$, 1H, H-C(3)); 6,33 (A von AB, J = 16, 1H, H-C(7)). MS: 224 (14, M^+ – HOAc), 206 (4, M^+ – HOAc – H₂O), 191 (19, M^+ – HOAc–H₂O – O), 142 (14,1), 125 (42,2), 98 (18,9), 97 (15,5), 43 (100). Anal. ber. für C₁₅H₂₄O₅ (284,35): C 63,36, H 8,51; gef.: C 63,22, H 8,46.

Von (\pm) -8 (Schmp. 170°) wurde eine Röntgenstrukturanalyse ausgeführt; s. Fig. 1.

4. (3S,5S,6S)-3-Acetoxy-5,6-dihydroxy-5,6-dihydrox β -ionon (15). Aus 250 mg 13 wurden analog Exper.3 nach Kristallisation aus CH₂C₂ und präp. DC der Mutterlauge (Kieselgel Merck, 2 mm; Aceton/Hexan 35:65) 194 mg (73%) 15 erhalten, farblose Tafeln (z. T. Zers. bei der Sublimation), Schmp. 121–122°, $[\alpha]_{D}^{22} = +24,5^{\circ}$ (c = 0,029, EtOH). UV (EtOH): 230 (10100). CD (EtOH): 365 (0), 320 (-0,3), 287 (0), 240 (+4,37), 224 (0) 210 (-4,67), ca. 195 (0). ¹H–NMR (90 MHz, CDCl₃): 0,89 (s, 3H, CH₃–C(1)); 1,14 1,24 (2s, je 3H, CH₃–C(1), CH₃–C(5)); ca. 1,81 (br. m, 4H, H₂C(2), H₂C(4)); 5,21 (m, $w_{\gamma} = 10$, 1H, H–C(3)); 6,31 (A von AB, 1H, H–C(8)); 7,42 (B von AB, 1H, H–C(7)). MS: 224 (9,0, M^+ – HOAc), 206 (1,2, M^+ – HOAc – H₂O), 191 (1,3, M^+ – HOAc – H₂O – O), 141 (7,6), 125 (26,9), 123 (13,8), 98 (12,7), 97 (12,3), 43 (100). Anal. ber. für Cl₁H₂₄O₅ (284,35): C 63,36, H 8,51; gef.: C 63,65, H 8,39.

Röntgenstruktur von (\pm) -15, s. Fig. 2.

5. [(3S,5S,6R)-3-Acetoxy-5,6-epoxy-5,6-dihydro- β -ionyliden]essigsäure-äthylester (= 5-[(1R,2S,4S)-4-Acetoxy-1,2-epoxy-2,6,6-trimethylcyclohexyl]-3-methyl-2,4-pentadiensäure-äthylester; **9**). Eine 50proz. ölige Suspension (570 mg) von NaH wurde mit Hexan gewaschen und danach in 20 ml trockenem THF aufgeschlämmt. Hierzu wurde bei 0° 3,5 ml (Diäthoxyphosphoryl)essigsäure-äthylester getropft. Das Gemisch wurde 30 Min. bei 0° und 30 Min. bei RT. gerührt, hierauf mit 502 mg 7 in 4 ml THF bei 0° tropfenweise versetzt, 30 Min. auf RT. erwärnt und dann noch 20 Std. gerührt. Aufnehmen in 50 ml AcOEt, Waschen mit je 100 ml ges. NH₄Cl und NaCl, Eindampfen und Säulenchromatographie des Rückstandes an Kieselgel 60 (Merck Nr. 4063) mit Hexan/ AcOEt 9:1 ergaben 590 mg (93%) **9**, welches nur eine Spur (9Z)-lsomer enthielt (HPLC). Aus EtOH/H₂O bei -25° wurden 174 mg isomerenfreie, farblose Kristalle vom Schmp. 50-50,5° erhalten, $[\alpha]_{22}^{22} = -1,52°$ (c = 0,66, EtOH). UV (EtOH): 263 (29030). CD (EtOH): ca. 270 (+2,15). ¹H-NMR (80 MHz, CDCl₃): 0,97 (s, 3H, CH₃-C(1)); 1,15, 1,22 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,28 (t, J = 7, 3H, CH₃CH₂); 1,3-2,5 (m, 4H), H₂C(2), H₂C(4)); 2,01 (*s*, 3H, Ac); 2,275 (*d*, J = 1, 3H, CH₃-C(9)); 4,165 (*q*, J = 7, 2H, CH₃CH₂); *ca.* 4,85 (*m*, $w_{1/2} \approx 30$, 1H, H–C(3)); 5,79 (*q*, J = 1, 1H, H–C(10)); 6,25 (*s*, 2H, H–C(7), H–C(8)). MS: 336 (1, M^+), 291 (1, M^+ – EtO), 276 (3, M^+ – HOAc), 263 (2), 261 (3), 220 (39), 174 (24), 147 (32), 132 (13), 119 (22), 43 (100).

6. [(3S,5R,6S)-3-Acetoxy-5,6-epoxy-5,6-dihydro- β -ionyliden]essigsäure-äthylester (14). Aus 354 mg 13 wurden analog *Exper.* 5 nach gleicher Chromatographie 320 mg (72%) 14 als nicht kristallisierbares Öl mit höchstens einer Spur (9Z)-Isomer (HPLC) erhalten, $[\alpha]_{D2}^{D2} = -65,4^{\circ}$ (c = 0,60, EtOH). UV (EtOH): 264 (28000). CD (EtOH): ca. 270 (-4,15). ¹H-NMR (80 MHz, CDCl₃): 0,98 (s, 3H CH₃-C(1)); 1,17 (s, 6H, CH₃-C(1)), CH₃-C(5)); 1,28 (t, J = 7, 3H, CH₃CH₂); 1,25-2,6 (m, 4H, H₂C(2), H₂C(4)); 2,01 (s, 3H, Ac); 2,28 (d, J = 1, 3H, CH₃-C(9)); 4,165 (q, J = 7, 2H, CH₃CH₂; ca. 4,9 (m, $w_{Y_2} = 20$, 1H, H-C(3)); 5,80 (q, J = 1, 1H, H-C(10)); 6,30 (s, 2H, H-C(7), H-C(8)). MS: 336 (0,5, M^+), 291 (0,5, M^+ – EtO), 276 (3, M^+ – HOAc), 263 (2), 261 (3), 220 (34), 174 (25), 147 (33), 132 (14), 119 (24), 43 (100).

7. [(3S,5R,6R)-3-Acetoxy-5,6-dihydroxy-5,6-dihydro- β -ionyliden]essigsäure-äthylester (= 5-[(1R,2R,4S)-4-Acetoxy-1,2-dihydroxy-2,6,6-trimethylhexyl]-3-methyl-2,4-pentadiensäure-äthylester; **10**). a) Herstellung aus **9**. Die Lösung von 580 mg **9** in 40 ml THF wurde bei 0° unter Rühren langsam mit 5 ml 30 proz. H₂SO₄ versetzt, dann 30 Min. bei RT. und $2\frac{1}{2}$ Std. bei 50° gehalten. Dann wurde in AcOEt aufgenommen und mit ges. NaHCO₃ und NaCl gewaschen, die org. Phase i.V. eingedampft und an Kieselgel 60 (Merck, 63-200 μ) mit Hexan/AcOEt 9:1 bis 3:1 chromatographiert: 508 mg (83%). Kristallisation aus CH₂Cl₂/Hexan ergab 392 mg farblose Kristalle, Schmp. 134,5–135°, $[\alpha]_D^{22} = -39,6°$ (c = 0,71, EtOH). UV (EtOH): 264 (28078). CD (EtOH): 268 (-3,02), 241 (0), 225 (+2,84), ca. 200 (0). ¹H-NMR (80 MHz, CDCl₃): 0,86 (s, 3H CH₃-C(1)); 1,15, 1,28 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,28 (t, J = 7, 3H, CH₃CH₂); 1,5–2,0 (m, 4H, H₂C(2), H₂C(4)); 2,03 (s, 3H, ch₃; 2,315 (d, J = 1, 3H, CH₃-C(9)); 4,175 (q, J = 7, 2H, CH₃CH₂); ca. 5,25 (m, $w_{ij} = 28$, 1H, H–C(3)); 5,83 (br. s, 1H, H–C(10)); 6,37 (A von AB, J = 16, 1H, H–C(8)); 6,59 (B von AB, J = 16, 1H, H–C(7)). MS: 294 (17,5, M^+ – HOAc), 265 (3, M^+ – HOAc – C₂H₃), 248 (11, M^+ – HOAc – EtOH), 221 (5), 137 (18), 43 (100). Anal. ber. für C₁₉H₃₀O₆ (354,45): C 64,39, H 8,53; gef.: C 64,10, H 8,46.

b) Herstellung aus 8. Wittig-Horner-Reaktion analog Exper. 5. Aus 305 mg 8 wurden nach Chromatographie an Kieselgel 60 (Merck, 63–200 μ) mit Hexan/Aceton 4:1 und nach Kugelrohrdestillation (125°/5·10⁻² Torr) 103 mg (27%) glasig erstarrendes Öl als (9Z/E)-Gemisch (1:3 gemäss ¹H-NMR) erhalten, identisch mit 10 aus 9 (qualitativ gleiche [α]₂², CD und UV, gleiche ¹H-NMR (neben Signalen für (9Z)-Isomer) und MS).

8. $[(35,55,65)^{-3}$ -Acetoxy-5,6-dihydroxy-5,6-dihydro- β -ionyliden]essigsäure-äthylester (16). a) Herstellung aus 14. Die Lösung von 305 mg 14 in 20 ml MeCN wurde bei RT. unter Rühren langsam mit 2,5 ml 30proz. H₂SO₄ versetzt. Nach 1¹/₄ Std. wurde mit AcOEt versetzt, mit 100 ml ges. NaHCO₃ und dann mit NaCl gewaschen, i. V. eingedampft und der Rückstand mit AcOEt azeotrop getrocknet. Der Rückstand wurde 2 Std. mit Ac₂O/Pyridin acetyliert, die Reagenzien wurden hierauf i. HV. abgedampft und das Produkt über Kieselgel 60 (Merck, 63–200 µ) mit (i-Pr)₂O chromatographiert. Von den beiden Hauptfraktionen enthielt die polare das gewünschte 16 (116 mg, 36%), die weniger polare das Diastereoisomere 10 (95 mg, 29%). Aus CH₂Cl₂/Pentan bei -25° wurden 99 mg 16 als farblose Kristalle erhalten, Schmp. 135–136°, [α]_D = +53° (c = 0,59, EtOH). UV (EtOH): 265 (28071). CD (EtOH): 266 (+3,43), 239 (0), 226 (-1,93), ca. 200 (0). ¹H-NMR (80 MHz, CDCl₃): 0,89 (s, 3H CH₃-C(1)); 1,13, 1,21 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,28 (t, J = 7, 3H, CH₃CH₂); 1,7–2,2 (m, 4H, H₂C(2), H₂C(4)); 2,82 (br. s, 1H, OH); 2,07 (s, 3H, Ac}); 2,33 (d, J = 1, 3H, CH₃-C(9)); 4,175 (q, J = 7, 2H, CH₃CH₂); 5,22 (m, J = 4, w_{V_2} = 10, 1H, H–C(3)); 5,825 (br. s, 1H, H–C(10)); 6,35 (A von AB, J = 16, 1H, H–C(8)); 6,73 (B von AB, J = 16, 1H, H–C(7)). MS: 294 (12, M^+ – HOAc), 265 (2, M^+ – HOAc – C₂H₅), 248 (7, M^+ – HOAc – EtOH), 221 (5), 137 (10), 43 (100). Anal. ber. für C₁₉H₃₀O₆ (354,45): C 64,39, H 8,53; gef.: C 64,18, H 8,45.

b) Herstellung aus 15. Wittig-Horner-Reaktion analog Exper. 5, jedoch nach 5 Std. beendet. Aus 194 mg 15 wurden nach Chromatographie an Kieselgel 60 (Merck, 63–200 μ) mit Hexan/Aceton 4:1 37 mg (15%) 16 als öliges (9Z/E)-Gemisch (2:3 gemäss ¹H-NMR (80 MHz)) erhalten, gemäss Chromatographie und ¹H-NMR identisch mit 16 aus 14.

9. $2-[(3S,5R,6R)-3,5,6-Trihydroxy-5,6-dihydro-\beta-ionyliden]äthanol (= <math>5-[(1R,2R,4S)-4-Acetoxy-1,2-di-hydroxy-2,6,6-trimethylhexyl]-3-methyl-2,4-pentadienol = Essigsäure-[(1S,3R,4R)-3,4-dihydroxy-3,5,5-trimethyl-4-(5-hydroxy-3-methyl-1,3-pentadienyl)cyclohexyl]ester; 11). Die Lösung von 354 mg 10 in 20 ml abs. Et₂O wurde unter Rühren bei 0° mit 12 ml 1M DIBAH in Hexan tropfenweise versetzt. Nach 1½ Std. bei 0° wurde mit 30 ml AcOEt langsam versetzt, nach ½ Std. mit ges. NH₄Cl und 3mal mit H₂O gewaschen, mit AcOEt azetrop getrocknet und der Rückstand an Kieselgel 60 (Merck, 63-200 µ) mit Hexan/AcOEt 1:9 und reinem AcOEt chromatographiert: 240 mg (76%), wovon 200 mg aus AcOEt/Hexan bei -25° in farblosen Kristallen erhalten wurden, Schmp. 73-73,5°, <math>[\alpha]_{22}^{22} = -48,3°$ (c = 0,40, EtOH). UV (EtOH): 236 (25800). CD (EtOH): 256 (0), 233 (-4,23), 214 (0), 205 (pos. Endabsorption). ¹H-NMR (80 MHz, CDCl₃ + 1 Tropfen (D₄)MeOH):

0,86 (s, 3H, CH₃-C(1)); 1,16, 1,23 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,3-1,8 (m, 4H, H₂C(2), H₂C(4)); 1,85 (s, 3H, CH₃-C(9)); ca. 3,95 (m, $w\frac{1}{2} \approx 30$, 1H, H-C(3)); 4,155 (d, J = 7, 2H, H₂C(11)); 5,55 (t, J = 7, 1H, H-C(10)); 6,06, 6,20 (*AB*, J = 16, 2H, H-C(7), H-C(8)). MS: 252 (2, $M^+ - H_2O$), 234 (15, $M^+ - 2H_2O$), 221 (5), 219 (3), 176 (7), 150 (11), 135 (36), 109 (36), 43 (100).

10. 2-[(3S,5S,6S)-Trihydroxy-5,6-dihydro-β-dihydro-β-ionylden]äthanol (17). Reduktion von 100 mg **16** analog *Exper. 9.* Analoge Chromatographie (79,5 mg) und Kristallisation aus AcOEt/CH₂Cl₂/Pentan bei -25° ergaben 65 mg (85%) farblose Nadeln, Schmp. 104-104,5°, $[\alpha]_D^{22} = +51,4°$ (c = 0,44, EtOH). UV (EtOH): 236 (27 300). CD (EtOH): 260 (0), 235 (+4,82), 215 (0), 205 (neg. Endabsorption). ¹H-NMR (80 MHz, CDCl₃ + 1 Tropfen (D₄)MeOH): 0,88 (s, 3H, CH₃--C(1)); 1,10, 1,26 (2s, je 3H, CH₃--C(1), CH₃--C(5)); 1,3-2,3 (m, 4H, H₂C(2), C₂C(4)); 1,84 (s, 3H, CH₃--C(9)); ca. 3,95 (m, 1H, H--C(3)); 4,26 (d, J = 7, 2H, H₂C(11)); 5,62 (t, J = 7, 1H, H--C(10)); 6,29 (s, 2H, H--C(7), H--C(8)).

11. $[(3S,5R,6R)-3,5,6-Trihydroxy-5,6-dihydro-\beta-ionyliden]acetaldehyd (= 5-[(1R,2R,4S)-4-Acetoxy-1,2-dihydroxy-2,6,6-trimethylhexyl]-3-methyl-2,4-pentadienal; 12). Die Lösung von 290 mg 11 in 20 ml AcOEt wurde 1 Std. mit 3 g bas. MnO₂ bei RT. gerührt. Nach dem Abfiltrieren über$ *Celite* $, Eindampfen und Trocknen des Rückstandes i. HV. wurde in quantitativer Ausbeute ein weisser Schaum erhalten, der nicht kristallisierte, <math>[\alpha]_{D}^{22} = -70,9^{\circ}$ (c = 0,45, EtOH). UV (EtOH): 286 (23400). CD (EtOH): 287 (-2,47), 258 (0), 244 (+1,39), 220 (0). ¹H-NMR (80 MHz CDCl₃): 0,87 (s, 3H, CH₃-C(1)); 1,18, 1,26 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,5-2,0 (m, 4H, H₂C(2), H₂C(4)); 2,305 (d, J = 1, 3H, CH₃-C(9)); 4,15 (m, $w_{1/2} = 22$, 1H, H-C(3)); 6,03 (br. d, J = 8, 1H, H-C(10)); 6,55 (A von AB, J = 16, 1H, H-C(8)); 6,75 (B von AB, J = 16, 1H, H-C(7)); 10,17 (d, J = 8, 1H, H-C(11)). MS (CI, Isobutan): 269 ($M^+ + 1$), 251 ($M^+ + 1 - H_2$ O), 233 ($M^+ + 1 - 2H_2$ O), 225.

12. f(3S,5S,6S)-3,5,6-Trihydroxy-5,6-dihydro- β -ionyliden]acetaldehyd (18). Die Lösung von 75 mg 17 wurde analog *Exper. 11* oxydiert und dann an Kieselgel 60 (*Merck*, 40-63 μ) mit Hexan/AcOEt 1:9 bis reinem AcOEt chromatographiert: 58,7 mg (78%) i. HV. getrocknetes Öl, $[\alpha]_{22}^{22} = +57,4^{\circ}$ (c = 0,58, EtOH). UV (EtOH): 286 (22400). CD (EtOH): 286 (+1,76), 262 (0), 244 (-1,92), 220 (0). ¹H-NMR (80 MHz, CDCl₃): 0,89 (s, 3H, CH₃-C(1)); 1,11, 1,34 (2s, je 3H, CH₃-C(1), CH₃-C(5)); 1,6-2,2 (m, 4H, H₂C(2), H₂C(4)); 2,33 (d, J = 1, CH₃-C(9)); 4,30 (m, $w_{V_2} = 10$, 1H, H-C(3)); 5,97 (d, J = 8, 1H, H-C(10)); 6,51 (A von AB, J = 16, 1H, H-C(8)); 6,93 (B von AB, J = 16, 1H, H-C(7)); 10,105 (d, J = 8, 1H, H-C(11)).

13. (3S,5R,6R,3'S,5'R,6'R)-5,6,5'6'-Tetrahydro-β,β-carotin-3,5,6,3'5'6'-hexol (20). Die Lösung von 186,2 mg Bisphosphoniumsalz 19 [20] [21] in 2 ml abs. MeOH wurde bei -35 bis -40° zuerst mit 0,07 ml 0,68м NaOMe/MeOH und dann gleichzeitig tropfenweise mit weiteren 0,63 ml NaOMe/MeOH und 121 mg 12 in 0,7 ml abs. MeOH versetzt. Dann wurde 2 Std. bei -25 bis -35° und 4 Std. bei RT. gerührt. Dieselbe Prozedur wurde noch 2mal durch Zusatz von je 80 mg 19 und 0,30 ml NaOMe/MeOH durchgeführt. Dann wurde in 100 ml Et₂O und 20 ml EtOH aufgenommen und gründlich mit H₂O gewaschen. Nach Abdampfen des Et₂O wurde zwischen 70proz. wässr. MeOH und Hexan/Toluol 1:1 verteilt, die Hypophase mit gleicher Menge H₂O versetzt, mit AcOEt extrahiert und diese Phase wieder gründlich gewaschen. Nach dem Trocknen durch azeotropes Eindampfen i. V. wurden 167 mg zähes rotes Öl erhalten. Präp. DC an 2 Kieselgel-Platten (Merck, 2 mm) mit Hexan/Aceton/EtOH 10:10:1 ergab 59 mg (41%) nicht ganz reines, öliges (Z/E)-Gemisch. Nach Isomerisation durch 4 Std. Beleuchten einer Suspension in siedendem Hexan unter Ar, Chromatographie an Kieselgel-Platten (Merck, 0,5 mm) mit Hexan/Aceton/EtOH und Kristallisation aus CH₂Cl₂/Hexan und wenig EtOH wurden 5,1 mg dunkelorange, filzige Nädelchen erhalten. HPLC (Spherisorb 5-CN, CH₂Cl₂/Hexan/MeOH/Et(i-Pr)₂N 128:68:5:0,1, Fluss 1,5 ml/Min.): t = 25,9 Min. CD (EtOH): 278 (0), 265 (-3,6), 245 (0), 224 (+1,9), 210 (0); keine wesentliche Veränderung bei -180° in Et₂O/Isopentan/EtOH 5:5:2. ¹H-NMR (200 MHz, CDCl₃): 0,87 (s, 6H, H₃C(16 od. 17), H₃C(16' od. 17')); 1,17, 1,24 (2s, je 6H, H₃C(16 od. 17), H₃C(16' od. 17'), H₃C(18), $H_1C(18')$; 1,3–1,9 (*m*, 8H, $H_2C(2)$, $H_2C(2')$, $H_2C(4)$, $H_2C(4')$); 1,96 (*s*, 12H, $H_1C(19)$, $H_1C(19')$, $H_1C(20)$, $H_3C(20')$; ca. 4,15 (m, $w_{1/2} \approx 25$, 2H, HC(3), HC(3')); 5,9-6,8 (m, 14H, olef. H). ¹H-NMR ((D₅)Pyridin): 1,32 (s, 6H, H₃C(16 od. 17), H₃C(16' od. 17')); 1,69, 1,76 (2s, je 6H, H₃C(16 od. 17), H₃C(16' od. 17), H₃C(18), $H_1C(18')$; 2,01 (s 12H, $H_3C(19)$, $H_3C(19')$, $H_3C(20)$, $H_3(20')$); 2,12 (d, $J = 12,5, 2H, H_{ax} - C(2) H_{ax} - C(2')$); 2,45–2,75 (m, 6H, $H_{\hat{s}q}$ –C(2), $H_{\hat{s}q}$ –C(2'), H_2 C(4), H_2 C(4')); *ca.* 4,9 (m, 2H, HC(3), HC(3')); 6,3–7,3 (m, 14H, 12H) olef. H); vgl. [8]. MS: 636 (15, M^+), 618 (2, $M^+ - 2H_2O$), 600 (3, $M^+ - 2H_2O$), 582 (2, $(M^+ - 3H_2O)$, 550 (2), 544 (2, M⁺ - Toluol), 538 (2), 508 (3), 221 (56, Oxepinium), 181 (60, Furylium), 105 (100; dieses Fragment wurde willkürlich auf 100% gesetzt, da leichtere Fragmente nicht gemessen wurden).

14. (3S,5S,6S,3'S,5'S,6'S)-5,6,5',6'-Tetrahydro- $\beta_i\beta$ -carotin-3,5,6,3',5',6'-hexol (21). Aus 58 mg 18 wurden analog Exper. 13 nach präp. DC (Kieselgel Merck, 2 mm; Aceton/Hexan 1:1) 36,9 mg noch ziemlich unreines öliges Gemisch von (Z/E)-Isomeren erhalten. Isomerisation durch Beleuchten mit einer Wolframlampe in siedendem Hexan und nochmalige präp. DC (Kieselgel Merck, 0,5 mm) ergaben 5,4 mg Öl, wovon aus Hexan/ CH₂Cl₂ und wenig EtOH 2,3 mg orange Büschel kristallisierten. HPLC (Spherisorb 5-CN, CH₂Cl₂/Hexan/ MeOH/Et(i-Pr)₂N 55:42:3:0,05, Fluss 1,5 ml/Min.): t = 6,45 Min; enthält 25% (Z)-Isomer mit t 6,77 Min. CD (EtOH): 265 (+2,87), 246–235 (0), *ca*. 215 (+1,1). ¹H-NMR (200 MHz, CDCl₃): 0,895 (*s*, 6H, H₃C(16 od. 17), H₃C(16' od. 17')); 1,125, 1,31 (2*s*, je 6H, H₃C(16 od. 17), H₃C(16' od. 17'), H₃C(18), H₃C(18')); 1,4–2,2 (*m*, 8H, H₂C(2), H₂C(2'), H₂C(4), H₂C(4')); 1,98 (*s*, 12H, H₃C(19), H₃C(19'), H₃C(20), H₃C(20')); 4,275 (*m* w₂ ≈ 12, 2H, HC(3), HC(3')); 6,15–7,05 (*m*, 14H, olef. H). ¹H-NMR (200 MHz, (D₅)Pyridin): 1,285 (*s*, 6H, H₃C(16 od. 17), H₃C(16' od. 17'), H₃C(16' od. 17')); 1,60, 1,79 (je *s*, je 6H, H₃C(16 od. 17), H₃C(16' od. 17'), H₃C(18), H₃C(18')); 2,01 (*s*, 6H, H₃C(20), H₃C(20')); 2,05 (*s*, 6H, H₃C(19), H₃C (19')); *ca*. 2,0–2,65 (*m*, 8H, H₂C(2), H₂C(2'), H₂C(4'), H₂C(4')); 4,59 (*m*, w₂ = 12, 2H, HC(3), HC(3')); 6,1–7,2 (*m*, 14H, olef. H). MS (bei hohen *m/z* mit Verstärkung aufgenommen!): 636 (0,3, *M*⁺), 618 (0,6, *M*⁺ – H₂O) – Toluol), 522 (0,5, *M*⁺ – 3H₂O), 522 (0,4, *M*⁺ – H₂O) – Toluol), 221 (16, Oxepinium); 181 (16, Furylium), 43 (100).

3,3'-Di-O-acetylderivat von 21: MS: 720 (9, M^+), 702 (2, $M^+ - H_2O$), 678 (3, $M^+ - Ac$), 660 (3, $M^+ - HOAc$), 642 (3, $M^+ - H_2O - HOAc$), 624 (2, $M^+ - 2H_2O - HOAc$), 622 (2), 600 (2), 580 (3), 263 (11, Oxepinium), 223 (16, Furylium), 91 (100).

15. (3S,5R,6R,3'R,6'R)-5,6-Dihydro- β , ε -carotin-3,5,6,3'-tetrol (23) und C(6)-Epimer 24. Zu einer Lösung von 65 mg «Taraxanthin», enthaltend 75% Lutein-epoxid (22), 12% Flavoxanthin und 12% Chrysanthemaxanthin in 450 ml THF/H₂O 2:1 wurden unter Rühren 150 ml 0,001N H₂SO₄ getropft. Nach 8 Std. wurde mit Et₂O und ges. NaHCO₃ versetzt, die Et₂O-Phase gut gewaschen, durch Zusatz von abs. EtOH i.V. azeotrop getrocknet und dann an einer Säule (26 × 150 mm, Kieselgel Merck, 40-63 µ) mit 20-50 % Aceton in Hexan chromatographiert. Zone 1: Flavoxanthin/Chrysanthemaxanthin (38,5 mg); Zone 2: 22 (5,4 mg); Zone 3: 24 (3,7 mg); Zone 4: 23 (5,2 mg). Tetrol 24 blieb amorph. HPLC (Spherisorb 5-CN, CH₂Cl₂/Hexan/MeOH/Et(i- $Pr_{2N} = 106,7:90:3,3:0,1$, Fluss 1,5 ml/Min.): t = 11,7 Min.; Enthält noch 2 (Z)-Isomere (total ca. 20%). UV/ VIS (EtOH): 468, 439, 416, 394 (sh), 326, 313, 265. CD (EtOH): 300 (0), 264 (+3,7, Bestimmung der Konzentration durch Annahme von $\varepsilon = 130\,000$, 215 (pos. Endabsorption). ¹H-NMR (200 MHz, CDCl₃): 0,82 (s, 3H, $H_3C(16 \text{ od. } 17)); 0.85 (s, 3H, H_3C(17')); 1.00 (s, 3H, H_3C(16')); 1.11, 1.265 (2s, je 3H, H_3C(16 \text{ od. } 17), H_3C(18));$ 1,63 (s, 3H, H₃C(18')); 1,92 (s, 6H, H₃C(19), H₃C(19')); 1,97 (s, 6H, H₃C(20), H₃C(20')); 1,25–2,2 (m, 6H, $H_2C(2), H_2C(4), H_2C(2')$; 2,42 (d, J = 10, 1H, HC(6')); ca. 4,28 (s, 2H, HC(3), HC(3')); 5,43 (A-Teil × d, $J_{7',6'} = 10, J_{7',8'} = 16, 1H, HC(7')); 5,55 (s, 1H, HC(4')); 5,88 (A-Teil, J_{7,8} = 16, 1H, HC(7)); 6,1-6,8 (m, 12H, 12H, 12H); 6,1-6,8 (m, 12H, 12H); 6,1-6,8 (m, 12H); 7,8 (m, 12H);$ übrige olef. H). MS: 602 (1, M⁺), 584 (1, M⁺ - H₂O), 567 (3, M⁺ - H₂O - OH), 550 (2), 221 (11, Oxepinium), 181 (13, Furylium), 43 (100).

Tetrol **23** kristallisierte aus Et₂O/wenig MeOH, Schmp. 203-205° HPLC (Bedingungen wie bei **20**): t = 18,3 Min., isomerenfrei. UV/VIS (EtOH): 469 (118 500), 439 (123 000), 415 (83 000), 394 (sh, 44 000), 226 (12 000), 314 (9500), 264 (27 700). CD (EtOH): 300 (0), 264 (+6,14), *ca*. 233 (+2,7), *ca*. 205 (pos. Endabsorption). ¹H-NMR (200 MHz, CDCl₃): 0,85 (s, 3H, H₃C(17')); 0,87 (s, 3H, H₃C(16 od. 17)); 1,00 (s, 3H, H₃C(16')); 1,18, 1,25 (2s, je 3H, H₃C(16 od. 17), H₃C(18)); 1,63 (s, 3H, H₃C(18')); 1,25-2,0 (*m*, 6H, H₂C(2) H₂C(4), H₂C(2')); 1,91 (s, 3H, H₃C(19')); 1,97 (s, 9H, H₃C(19), H₃C(20), H₃C(20')); 2,42 (d, $J_{6',7'} = 10$, 1H, H-C(6')); *ca*. 4,15 (*m*, 1H, HC(3)); 4,26 (*m*, 1H, HC(3)); 5,43 (*A*-Teil × *d*, $J_{7',6'} = 10$, $J_{7',8'} = 16$, 1H, HC(7')); 5,55 (s, 1H; HC(4')); 6,05-6,8 (*m*, 13H, restliche olef. H). MS: 602 (2, *M*⁺), 584 (2, *M*⁺ - H₂O), 567 (2, *M*⁺ - H₂O - OH), 566 (1, *M*⁺ - 2H₂O), 550 (2), 548 (2, *M*⁺ - 3H₂O), 221 (11, Oxepinium), 181 (13, Furylium), 91 (100).

16. $(35,55,6R,3'R,6'R)5,6-Dihydro-\beta,\epsilon-carotin-3,5,6,3'-tetrol (26).$ Eine Lösung von 26,5 mg 5,6-Diepilutein-5,6-epoxid (25), hergestellt gemäss [11], wurde wie 22, jedoch 18 Std. lang, hydrolysiert. Analoge Säulenchromatographie (Säule 150 × 26 cm) ergab nur 2 Zonen. Zone 1: 25, Epiflavoxanthin und Epichrysanthemaxanthin (20,3 mg); Zone 2: 26. Weitere Reinigung an Kieselgel-Platten (*Merck*, 0,5 mm) mit Aceton/Hexan 1:1 ergab 3,2 mg 26. Aus Et₂O/Hexan/wenig MeOH orange Kristalle, Schmp. 216–218°. HPLC (Bedingungen wie bei 20): t = 9,5 Min.; enthält noch 2 (Z)-Isomere (total *ca*. 20%). UV/VIS (EtOH): 468 (128000), 439 (130000), 416 (86100), 395 (sh, 44800), 326 (8600), 314 (6700), 265 (31300). CD (EtOH): 285 (0), 236 (+9,6), 223 (pos. Min.), 205 (pos. Endabsorption). ¹H-NMR (200 MHz, CDCl₃: 0,85 (*s*, 3H, H₃C(17')); 1,00 (*s*, 3H, H₃C(16')); 1,03 1,06, 1,35 (3*s*, je 3H, H₃C(16), H₃C(17), H₃C(18)); 1,97 (*s*, 6H, H₃C(20)); 1,241 (*d*, *J* = 10, HC(6)); 3,97 (*m*, 1H, HC(3)); 4,26 (*m*, 1H, HC(3')); 5,47 (*A*-Teil × *d*, $J_{7,6'} = 10$, $J_{7,8'} = 16$, 1H, HC(7')); 5,542 (*s*, 1H, H-C(4')); 5,582 (*A*-Teil, *J* = 16, 1H, HC(7)); 6,05–6,65 (*m*, 12H, übrige olef. H). MS: 602 (4, M^+), 584 (3, M^+), 566 (5, $M^+ - 2H_2O$), 550 (2), 221 (28, Oxepinium), 181 (27, Furylium), 43 (100).

LITERATURVERZEICHNIS

- [1] H.H. Strain, K. Aitzetmüller, W.A. Svec & J.J. Katz, J. Chem. Soc., Chem. Commun. 1970, 876.
- [2] H. Nitsche, Arch. Mikrobiol. 90, 151 (1973).
- [3] R. Buchecker & S. Liaaen-Jensen, Phytochemistry 16, 729 (1977).
- [4] M. Lippert & P. Karrer, Helv. Chim. Acta 39, 698 (1956).
- [5] R. Buchecker, S. Liaaen-Jensen & C. H. Eugster, Phytochemistry 14, 797 (1975).
- [6] E. Märki-Fischer, R. Buchecker & C.H. Eugster, Helv. Chim. Acta 67, 461 (1984).
- [7] R. Buchecker, S. Liaaen-Jensen & C. H. Eugster, Helv. Chim. Acta 59, 1360 (1976).
- [8] T. Matsuno & S. Sakaguchi, Tetrahedron Lett. 24, 911 (1983).
- [9] K. Mori, Tetrahedron Lett. 1973, 2635.
- [10] M. Acemoglu, W. Eschenmoser & C. H. Eugster, Helv. Chim. Acta 64, 2691 (1981).
- [11] H. Cadosch & C. H. Eugster, Helv. Chim. Acta 57, 1472 (1974).
- [12] H. Cadosch, U. Vögeli, P. Rüedi & C.H. Eugster, Helv. Chim. Acta 61, 783 (1978).
- [13] E. Märki-Fischer, R. Buchecker, C. H. Eugster, G. Englert, K. Noack & M. Vecchi, Helv. Chim. Acta 65, 2198 (1982).
- [14] I. Stewart, Proc. Int. Soc. Citriculture 1, 308 (1977); J. Agric. Food Chem. 25, 1132 (1977).
- [15] J. Stewart & T.A. Wheaton, Proc. Int. Soc. Citriculture, Congreso mund. Murcia, Vol. II, 325 (1973).
- [16] O. Straub, 'Key to Carotenoids', Liste B, 'Carotenoids of Unknown Structure', Birkhäuser, Basel, 1976, S. 103ff.
- [17] J. Gross, M. Carmon, A. Lifshitz & B. Sklarz, Phytochemistry 14, 249 (1975).
- [18] R. Buchecker, U. Marti & C.H. Eugster, Helv. Chim. Acta 65, 896 (1982).
- [19] E. Märki-Fischer, U. Marti, R. Buchecker & C. H. Eugster, Helv. Chim. Acta 66, 494 (1983).
- [20] J.D. Surmatis & A. Ofner, J. Org. Chem. 26, 1171 (1961).
- [21] K. Bernhard, F. Kienzle, H. Mayer & R.K. Müller, Helv. Chim. Acta 63, 1473 (1980).